
A Plug and Play GNC Architecture Using FPGA
Components

K. KrishaKumar, J. Kaneshige
NASA Ames Research Center, Moffett Field, CA, 94035

R. Waterman
NASA Kennedy Space Center, Cape Canuveral, FL

C. Pires, C. Ippoloito
NASA Ames Research Center, Moffett Field, CA, 94035

The goal of Plug and Play, or PnP, is to allow hardware and software components to
work together automatically, without requiring manual setup procedures. As a result, new
or replacement hardware can be plugged into a system and automatically configured with
the appropriate resource assignments. However, in many cases it may not be practical or
even feasible to physically replace hardware components. One method for handling these
types of situations is through the incorporation of reconfigurable hardware such as Field
Programmable Gate Arrays, or FPGAs. This paper describes a phased approach to
developing a Guidance, Navigation, and Control (GNC) architecture that expands on the
traditional concepts of PnP, in order to accommodate hardware reconfiguration without
requiring detailed knowledge of the hardware. This is achieved by establishing a functional
based interface that defines how the hardware will operate, and allow the hardware to
reconfigure itself. The resulting system combines the flexibility of manipulating software
components with the speed and efficiency of hardware.

L Introduction
A scalable plug-and-play software and hardware architecture that can be adapted for GNC of small autonomous
robotic surface vehicles as well as for large autonomous and human piloted transport vehicles is the goal of the
NASA plug and play avionics research. As a result of PnP, new or replacement hardware can be plugged into a
system and automatically configured with the appropriate resource assignments. An intelligent glug-gnd-glay
avionics (iPapa) system can provide critical capabilities for different space exploration missions. Many exploration
missions involve the guidance, navigation and control (GN&C) of different systems and their sub-systems.
Designing individual avionics solutions for each of these systems substantially increases the overall program costs.
A plug and play system that can support the different GN&C requirements of many of these systems in their
different flighdground phases provides an attractive affordable solution to this problem. Besides working across
different systems, the iPapa system can have on-board intelligence with verifiable-adaptation of the controller for
xdoxeseen system fahres aqd chw-ges k mission. This pvk!es a *hFOrkmt analfica! fault-tolerant capability
that can be augmented with hdware fault-tolerance by using devices such as field programmable gate arrays
(FPGAs).

A plug-and-play architecture for real-time intelligent avionics is a critical capability for the crew exploration
vehicle (CEV) as well as for other human tended non-terrestrial surface elements defined as part of the human and
robotic exploration missions. Modular reconfiguration of a system is well understood, from a mechanical
perspective; however, ofien the avionics and software design is much less modular aid recodigmabie. Tnis desigi
artifact leads to larger operations costs and inflated software development, and sustaining engineering to update and
reverify, validate and certify the software changes due to reconfiguring the hardware.

Modular FPGA-based avionics with flexible control software can also be used in various robotic applications.
They can serve as single-axis motion controllers with sensory feedback and fault tolerant computing capabilities.
They can be located close to each actuator to reduce complex cabling costs. They can also serve as controllers for
robotic arms coordinating several degrees-of-freedom. All these components require the acquisition of various
sensory information, the fusion and processing of that knowledge, and the generation of behaviors that result in
either estimated knowledge or system motion. However, to operate reliably in various environments and under

1
American Institute of Aeronautics and Astronautics

different system configurations, these controllers must be able to learn and adapt to ,changes in their environment.
These changes can range &om large variations in the load experienced by manipulator joints, variations in terrain
roughness for mobility platforms, variations in lighting condition for vision applications, or variations in the quality
of the measurements from different fidelity sensors.

In the sections that follow we present the concepts of iPapa, the use of FPGAs, and the application to intelligent
GNC.

II. Plug and Play Concept
Plug and Play as a computer jargon was introduced as a functionality of the Windows 95 operating system. Ever

since then, PnP has stood for components that can be hot-swapped between systems, via an automated service
discovery system, without m a n d setup by the user.

The iPapa system proposed here involves two elements, a plug-n-play component and an intelligent plug-n-play
architecture that supports the component. The plug-n-play architecture must be able to recognize the components
and establish communication, requiring a level of standardhition be imposed on the architecture that specifies the
communication protocol, data bus, power requirements, physical interface requirements, etc. Protocols must also be
established to allow the necessary modifications to the avionics system as well as the plug-and-play modules to
accommodate a previously unknown module configuration in a wide spectrum of possible platforms such as rovers
and spacecraft. For instance, sensor information and actuator configurations will be often radically different on each
platform. Standardization requirements definitions will establish the communication protocols to allow this
information to be passed between the system and modules, and must define the tradeoff between flexibility and
complexity of the architecture to ensure usability without curtailing functionality.

Figure 1 presents a decentralized iPapa architecture along with the GN&C components. The component, once
“plugged-in”, publishes itself as a Papa GN&C component and subscribes to the required input variables. It also
publishes the output variables for use by the system. The required GN&C components are downloaded form
memory into the FPGA chip to enable reconfiguration and reprogramming capability.

The database of the GN&C functional elements will consist of needed guidance algorithms, navigation
algorithms, and control algorithms that will be used by the reconfigurable plug and play component as functional
blocks [I]. The iPapa architectural manager will use these functional blocks for constructing the GN&C system on
the reconfigurable plug and play component knowing the system and its operational phase. Figure 2 illustrates the
relationships between the Papa architectural manager, the guidance, the navigation and the control component of an
avionics system and their interaction with the physical system. The Papa architectural manager identifies the
physical system as well as the flightlground operational phase of the system. It then uses this information to
reconfigure the individual GN&C components for that particular system and its phase of operation.

The database of the GN&C h d i o n a l elements will consist of all the different guidance algorithms, the
navigation algorithms, and control algorithms that will be used by the reconfigur&le plug-n-play component as
functional blocks. The Papa architectural manager will use these functional blocks for constructing the GN&C
system on the reconfigumble plug-n-play component knowing the system and its operational phase.

A. Phased Approach to iPapa

The Papa architecture is planned to be developed over three years in three different phases. In Phase A (See
Figure 3A>, muitipie control algorithms will reside in a FFGA-based hardware component that can be
reprogrammed on the fly. In Phase B (Figure 3B), Multiple (complex) control algorithms residing in a processor that
can be uploaded to an FPGA on-the-flw for reconfiguration will be developed. In Phase C (Figure 3C),
reconfigurable FPGA capability in a decentralized fi-amework will be developed.

III. Plug and Play using FPGAs
Field Programmable Gate Arrays (FPGAs) are programmable devices that have reconfiguration capability that

can be used for fault recovery or performing multiple tasks. The big benefit of FPGAs is the ability to do “on-the-
fly” reconfigurability. Another benefit of FPGAs is the time needed to fabricate special purpose chips (typically 3
months) is eliminated. Since the popularity of FPGAs is phenomenal, many off-the shelf tools are available for rapid
prototyping. For example, tools are readily available for FPGA design using Matlab and C languages. This enables
GNC specialists to prototype hardware solutions in a rapid manner.

In addition to the above benefits, today’s FPGA gate densities and increased clock speeds reduce the
performance gap between FPGAs and fixed silicon processors. The configurability and flexibility of FPGAs allows

2
American Institute of Aeronautics and Astronautics

for more parallel processing in hardware vs. the traditional serial processing paradigms used by single fixed silicon
chips.

Another advantage posed by reconfigurability is in fault-tolerance of FPGAs [2,3]. Figure 4 depicts a typical
failure scenario that the FPGA can encounter. After being partly damaged by an external or internal source, the
FPGA can be reprogrammed using its undamaged gates. This capability can be used to correct latent design errors as
well as on-chip and off-chip failures. Such autonomous repair capability provides an alternative to device
redundancy that offers potential weight savings in NASA missions. At the same time the characteristics of all the
different failures need not be diagnosed in order to initiate repair.

IV. Plug and Play GNC
In an accompanying paper at this conference [l], we have presented a survey of GNC algorithms for space

missions to low-earth orbit as well as missions to moon and back. Surveying the GN&C problems in various flight
phases bring out the requirements for the GN&C database needed for designing the iPapa component. This database
can be classified in terms of different block-sets.

A. Guidance Block-set

The guidance algorithms in the different flight phases reviewed consist of

03 algorithms supporting thrust vector control where the required velocity for the maneuver is computed. The
required velocity vector and the estimated vehicle velocity vector provide the velocity to be gained vector.
The guidance algorithm then commands an angular velocity for aligning the thrust vector with the velocity
to be gained vector.

03 earth entry phase algorithm where a reference liWdrag profile is chosen and the guidance algorithm provide
open-loop and closed loop angle of attack and bank angle commands for maintaining this drag profile. This
algorithm is general enough to be applicable for any atmospheric planetary entry.

0% earth boost phase algorithm, when a table-lookup based logic is used for providing the commanded values
of angle of attack and side slip, as a function of the vehicle velocity

03 steering algorithm that smoothes the commands given by the guidance algorithm and provide desired
commands to the control architecture.

B. Navigation Block-set

The navigation algorithms in the different flight phases reviewed consist of:

03 state estimation algorithms that take inputs fkom different sensors to provide the state of the vehicle. These
consist of the extended Kalman filter like algorithms that take inputs from IMUs and rate gyros. Vehicle
attitude is also given by sensors such as the star trackers, sun and horizon sensors.

03 sensor failure detection and identification algorithms that compare the inputs of redundant sensors and
provide the appropriate sensor input to the estimation algorithms.

0:' vision processing algorithms that can compute relative range, range rate and attitude of the target spacecraft
during Ak%Z fiight phase

03 general digital signal processing algorithms that act as static filtering algorithms for various sensors.

C. Control Block-set

The control algorithms in the different flight phases reviewed consist of

*3 the PID control algorithm that is implemented in the shuttle earth boost phase for commanding the SRB
deflections and in the shuttle entry phase for commanding the aerodynamic surfaces.

03 phase plane logic that is used to fire the reaction jets in the on-orbit phase, in lunar descent and ascent
phases as well as in the earth entry flight phase.

*3 thrust vector control laws that consist of digital compensation filters as used in the on-orbit maneuvers and
in the lunar descent phase.

3
American Institute of Aeronautics and Astronautics

manual control laws such as the rate command-attitude hold algorithm implemented for the LEM manual
attitude control design.
control allocation and blending logic

D. Coordinate Block-set

One of the most important functional forms in implementing any of the GN&C architectures ,is coordinate
transformation. The space shuttle and the Apollo missions use several different coordinate systems such as the body
axes system, earth-fixed system, the inertial system, the LVLH system, the lunar-fixed system, the lunar approach
guidance coordinate system and so on. The GN&C database therefore needs to include a coordinate block-set that
provides support for all its algorithms in various flight phases.

V. Plug and Play Adaptive Control
One of the required characteristics of Papa is the ability of the component to be fault-tolerant. In addition to

this, it is also required for the component to compatible to a wide variation in system characteristics. This could be
achieved via a system identification process or by using robust/adaptive capability in the GNC components. The
approach taken in the iPupa component is to use direct adaptive control to achieve both fault-tolerance and
robustness to system variations. The basic architecture that provides the robusdadaptive charchitic is based on an
intelligent flight controller developed at NASA Ames Research Center [4,5].

In Figures 6A, 6B and 6C, we present the adaptive control application to three different realistic test platforms:
These include: (1) Exploratory Air Vehicle; (2) Docking mechanism; (3) Robotic rover. The architecture highlighted
as iPupu in the figures is explained next.

P + I Error Controller: Errors in system responses can be caused by inaccuracies in system variations and model
inversion. Unidentified damage or failures can also introduce additional errors. In order to achieve desired
perfonname, a proportional-integral (PI) error controller is used to correct for errors detected from sensory
feedback.

Learning Neural Network: The on-line learning neural networks work in conjunction with the error controller.
By recognizing patterns in the behavior of the error, the neural networks can learn to remove biases through control
augmentation commands. These commands prevent the integrators from having to windup to remove error biases.
By allowing integrators to operate at nominal levels, the neural networks enable the controller to provide consistent
performance. The learning neural networks not only helps control the nominal system, but also provides an
additional potential for adapting to changes in system dynamics due to control failures or damage.

Dvnamic Inversion GeneratiodStatic NN: The dynamic inversion element converts the summed response
commands into virtual control surface commands. Dynamic inversion is based upon feedback linearization theory.
No gain-scheduling is required, since gains are functions of system characteristics and sensor feedback. Several
methods are available to accomplish approximate model definition: simple linear model methods, nonlinear tables or
using pre-trained neural networks (non-changing) to provide estimates of system characteristics. The model is then
inverted to solve for the necessary control commands.

VI. Challenges Faced
Many challenges exist to Winning acceptance of this intelligent reconfigurable PnP system design paradigm over the
more traditional static avionics system. One of the most difficult challenges will be finding an approach that can
veriQ/validate that control capability can be maintained despite the dywamic addition m-d rmova! nf support
services. This approach must be built on an abstraction technique that can effectively hide hardware details from
one system to another and an interface that is well tested. This approach however will not be enough to tackle the
criticality and certification issues. In order to guarantee that a support service provided by one module does not
impede a critical service on another module, multiple data buses supporting a hierarchy of service levels will be
required. In this way the dynamic behavior can be isolated and verified in more manageable sizes. The hierarchy of
services envisioned may be tiered to support the following critical functions: Control, Life Support, and Mission. A
fourth tier may be needed to address non-critical operations. The service classes associated with each of the tiers are
as follows:

4
American Institute of Aeronautics and Astronautics

>
>
>

Control: Maximum failure response time is typically on the order of seconds. This would apply
primarily to GN&C, Power, Propulsion, and Command & Control.
Life Support: Maximum failure response time is generally on the order of minutes. This would
apply primarily to Environment Control, Life Support, and Communications.
Mission: Maximum failure response time is usually on the order of hours. This would apply
primarily to Science Instruments, Data Record & Retrieval, and Human Support Equipment
(Galley, Waste Management).
Non-Critical: No maximum failure response time. This would apply mostly to Crew In€ormation
Network (email, electronic documentation, multi-media).

I >

Using this tiered approach each service class would perform the same service discovery process to determine the
capabilities offered by each peer within its class. From a certification standpoint an exhaustive verification would
not be required to prove that the communication system does not impact the propulsion system. Likewise it would
not have to be proven that the Waste Management System does not affect the communications system.

Another challenge will be differentiating between when a system has failed and when it has been powered
down or removed. This differentiation is an important consideration when forming an appropriate redundancy
management strategy and determining a set of corrective actions that can recover a Gled function. An approach to
solving this challenge can be found in several emerging health management algorithms that can learn the behavior of
the hardware over time. This ability to learn generally requires a large data set from which prognostic and diagnostic
information can be derived.

VU. CQNCLUSIQNS
There are several difficult challenges that must be met before an intelligent reconfigurable PnP avionics system can
be developed. Automated Service Discovery technologies, which have significantly improved the ability to
dynamically reconfigure a personal computer, must be evolved to meet the stringent requirements of a critical space-
rated avionics architecture. Each challenge must be satisfied by a solution that can be verified, validated and
certified. Developing a tiered architecture will provide a way to isolate service criticalities as will strong adherence
to abstraction and interface requirements. Although each challenge must be addressed prior to implementing a
dynamic reconfigurable avionics system, success in these efforts will be required to enable an affordable, sustainable
and safe transportation system that can deliver crew and cargo from the surface of the Earth to exploration
destinations beyond

VIII. References

1.

2.

3.

4.

5.

Kulkami,, N., Krishnaumar, K., Spacecraft guidance, navigation, and control requirements for an intelligent
plug-n-play avionics (PPAPA) archit&ture,
29,2005.

Infotech@Aerospace Conferen&, Washington DC< Sep-26-

Lohn, J.D., G. Larchev, R. DeMara, "A Genetic Representation for Evolutionary Fault Recovery in Virtex
FPGAs," Intl. Con$ on Evolvable Systems, March, 2003.

Lohn, J.D., "A Coevolutionary Genetic Algorithm for Autonomous Fault-Handling in FPGAs," Intl. Con$ on
Military and Aerospace Programmable Logic Devices, Laurel, MD, September 10-12, 2002.Kaneshige7 John
and Gundy-Burlet, Karen, Integrated Neural Flight and Propulsion Control System, AIAA-2001-4386, August
200 1.

KrisMumar, K., Limes, G., Gundy-Burlet, K., Bryant, D., An Adaptive Critic Approach to Reference Model
Adaptation. AIAA 2003-5790, August, 2003.

Kaneshige, John, John Bull, and Joseph J. Totah, Generic Neural Flight Control and Autopilot System, AIAA
2000-4281, August 2000.

5
American Institute of Aeronautics and Astronautics

Operator
Commands

Figure 1. A Decentralized Papa Architecture

I
I

i Reconfigurable GN&C Platform

Figure 2: Papa Architectural Flow

6
American Institute of Aeronautics and Astronautics

Figure 3A. Phase A of the iPapa Architecture

Figure 3B. Phase B of the iPapa Architecture

7
American Institute of Aeronautics and Astronautics

Figure 3C. Phase C of the iPapa Architecture

8
American Institute of Aeronautics and Astronautics

Figure 5A. Adaptive Control for an Exploratory Air Vehicle

Figure 5B. Adaptive Control for a Rover

9
American Institute of Aeronautics and Astronautics

Figure 5C. Adaptive Control for a Docking Mechanism

10
American Institute of Aeronautics and Astronautics

